The multicomponent $q$-coherent states of the quantum algebra $\mathrm{sl}_{\mathrm{q}}(3)$

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1994 J. Phys. A: Math. Gen. 273073
(http://iopscience.iop.org/0305-4470/27/9/021)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 23:46

Please note that terms and conditions apply.

# The multicomponent $q$-coherent states of the quantum algebra $s l_{q}(\mathbf{3})$ 

Guang-Hua Li $\ddagger \ddagger$, San-Ru Hao $\ddagger$, Jun-Yun Long $\ddagger$ and Qian-Jun Yue§ $\dagger$ CCAST (World Laboratory), PO Box 8730, Beijing 100080, People's Republic of China $\ddagger$ Department of Physics, Changsha Normal University of Water Resources and Electric Power, Changsha, Hunan 410077, People's Republic of China<br>§ Computer Centre. Changsha Normal University of Water Resources and Electric Power, Changsha, Hunan 410077, People's Republic of China

Received 23 August 1993, in final form 23 December 1993


#### Abstract

The multicomponent $q$-coherent states associated with the quantum algebra $s l_{q}(3)$ are presented. The expansions are discussed for arbitrary operators in terms of the multicomponent $q$-coherent states of $s l_{q}$ (3). An inhomogeneous differential realization of $s l_{q}(3)$ in this multicomponent $q$-coherent state space is obtained.


## 1. Introduction

It is well known that the theory of coherent states has as long a history as quantum mechanics itself, and continues to generate interest, not just theoretically but also practically [1]. The concept of coherent states was first introduced by Schrödinger in 1926 [2]. The coherent states were first used by Glauber in the field of quantum optics [3], and extended to arbitrary Lie groups by Perelomov and Gilmore [4, 5]. An excellent review is given in [6].

Recently, the coherent states of quantum algebra have also attracted much attention. The $q$-deformed boson realization of the quantum algebra $s u_{q}(2)$ has been introduced by Biedenharn [7] and Macfarlane [8]. The $q$-coherent states of the $q$-harmonic oscillator have been given by Biedenharn [7]. For the quantum algebra $s u_{q}(2)$, the $q$-analogue of the usual spin coherent state has been constructed by Quesne [9].

In this paper, by analysing the properties of the finite-dimensional irreducible representations of $s l_{q}(3)$, we present the multicomponent $q$-coherent states of $s l_{q}(3)$, and discuss the expansions of arbitrary operators in terms of these $q$-coherent state vectors. We also study the inhomogeneous differential realization of $s l_{q}(3)$ in this multicomponent $q$-coherent state space.

## 2. Quantum algebra $s l_{q}(3)$

For the quantum algebra $s l_{q}(3)$, the general relations have been given by Jimbo [10]. The generators of $s l_{q}(3)$ have been rewritten as $Q, J_{0}, J_{ \pm}, T_{ \pm 1 / 2}$ and $V_{ \pm 1 / 2}$ by Yu [11].

They obey the commutator relations

$$
\begin{array}{lcl}
{\left[Q, J_{0}\right]=\left[Q, J_{ \pm}\right]=0} & {\left[J_{0}, J_{ \pm}\right]= \pm J_{ \pm} \quad\left[J_{+}, J_{-}\right]=\left[2 J_{0}\right]} \\
{\left[J_{0}, T_{s}\right]=s T_{s}} & {\left[J_{0}, V_{s}\right]=s V_{s}} & {\left[Q, T_{s}\right]=3 T_{s}}  \tag{1}\\
{\left[Q, V_{s}\right]=-3 V_{s}} & s= \pm \frac{1}{2}
\end{array}
$$

and

$$
\begin{equation*}
J_{+}=\left(J_{-}\right)^{+} \quad V_{ \pm 1 / 2}=\mp\left(T_{\mp 1 / 2}\right)^{+} \quad J_{ \pm}^{2} T_{\mp 1 / 2}+T_{\mp 1 / 2} J_{ \pm}^{2}=[2] J_{ \pm} T_{\mp 1 / 2} J_{ \pm} \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
[x]=\left(q^{x}-q^{-x}\right) /\left(q-q^{-1}\right) \tag{3}
\end{equation*}
$$

so

$$
\begin{equation*}
[-x]=-[x] . \tag{4}
\end{equation*}
$$

This tells us that the operators $J_{0}$ and $J_{ \pm}$form the quantum subalgebra $s u_{g}(2)$ of the quantum algebra $s l_{g}(3)$. The operator $Q$ is an irreducible tensor of rank zero, $\left\{J_{0}, J_{ \pm}\right\}$ is a set of irreducible tensor operators of rank 1 , and $\left\{T_{ \pm 1 / 2}\right\}$ and $\left\{V_{ \pm 1 / 2}\right\}$ are two sets of rank $\frac{1}{2}$ for $s u_{q}(2)$.

If $q$ is not a root of unity, the finite-dimensional irrep of $s l_{q}(3)$ can be given by the non-negative integers $\lambda$ and $\mu$. The bases of Hilbert space $V^{(\lambda \mu)}$ carrying the $I R(\lambda \mu)$ of $s l_{q}$ (3) are the Elliott-like bases $|(\lambda \mu) \varepsilon J M\rangle$, where $\varepsilon=-\lambda-2 \mu,-\lambda-2 \mu+3, \ldots$, $\left.2 \lambda+\mu ; \left.J=\frac{1}{6} \right\rvert\, 2 \lambda-2 \mu-\varepsilon\right\}, \frac{1}{6}|2 \lambda-2 \mu-\varepsilon|+1, \ldots, \min \left\{\frac{1}{6}(2 \lambda+4 \mu-\varepsilon), \frac{1}{6}(2 \mu+4 \lambda+\varepsilon)\right\}$ and $M=-J,-J+1, \ldots, J[12]$. They are orthonormal and complete

$$
\begin{align*}
\left\langle(\lambda \mu) \varepsilon J M \mid\left(\lambda^{\prime} \mu^{\prime}\right) \varepsilon^{\prime} J^{\prime} M^{\prime}\right\rangle & =\delta_{\lambda \lambda^{\prime}} \delta_{\mu \mu^{\prime}} \delta_{\varepsilon \varepsilon^{\prime}} \delta_{J J^{\prime}} \delta_{M M^{\prime}}  \tag{5}\\
\sum_{\varepsilon J M}|(\lambda \mu) \varepsilon J M\rangle\langle(\lambda \mu) \varepsilon J M| & =I \tag{6}
\end{align*}
$$

where $I$ is the identity operator. From [11], it can be shown without difficulty that

$$
\begin{align*}
& Q|(\lambda \mu) \varepsilon J M\rangle= \varepsilon|(\lambda \mu) \varepsilon J M\rangle \\
& J_{0}|(\lambda \mu) \varepsilon J M\rangle= M|(\lambda \mu) \varepsilon J M\rangle \\
& J_{ \pm}|(\lambda \mu) \varepsilon J M\rangle=\{[J \mp M][J \pm M+1]\}^{1 / 2}|(\lambda \mu) \varepsilon J M \pm 1\rangle \\
& T_{ \pm 1 / 2}|(\lambda \mu) \varepsilon J M\rangle \\
&=A(\varepsilon J)\{[J \pm M+1]\}^{1 / 2}\left|(\lambda \mu) \varepsilon+3 J+\frac{1}{2} M \pm \frac{1}{2}\right\rangle  \tag{7}\\
& \mp B(\varepsilon J)\{[J \mp M]\}^{1 / 2}\left|(\lambda \mu) \varepsilon+3 J-\frac{1}{2} M \pm \frac{1}{2}\right\rangle
\end{align*}
$$

$V_{ \pm 1 / 2}|(\lambda \mu) \varepsilon J M\rangle$

$$
\begin{aligned}
= & C(\varepsilon J)\{[J \pm M+1]\}^{1 / 2}\left|(\lambda \mu) \varepsilon-3 J+\frac{1}{2} N \pm \frac{1}{2}\right\rangle \\
& \pm D(\varepsilon J)\{[J \mp M]\}^{1 / 2}\left|(\lambda \mu) \varepsilon-3 J-\frac{1}{2} M \pm \frac{1}{2}\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
A(\varepsilon J)=\{ & {\left[\frac{1}{6}(2 \lambda+4 \mu-\varepsilon)-J\right]\left[\frac{1}{6}(2 \mu-2 \lambda+\varepsilon)+J+1\right] } \\
& \left.\times\left[\frac{1}{6}(4 \lambda+2 \mu+\varepsilon)+J+2\right][2 J+1]^{-1}[2 J+2]^{-1}\right\}^{1 / 2}
\end{aligned}
$$

$$
\begin{align*}
& B(\varepsilon J)=\{ {\left[\frac{1}{6}(2 \lambda-2 \mu-\varepsilon)+J\right]\left[\frac{1}{6}(2 \lambda+4 \mu-\varepsilon)+J+1\right] } \\
&\left.\quad \times\left[\frac{1}{6}(4 \lambda+2 \mu+\varepsilon)-J+1\right][2 J]^{-\mathrm{t}}[2 J+1]^{-1}\right\}^{1 / 2}  \tag{8}\\
& C(\varepsilon J)=\left\{\left[\frac{1}{6}(2 \lambda-2 \mu-\varepsilon)+J+1\right]\left[\frac{1}{6}(2 \lambda+4 \mu-\varepsilon)+J+2\right]\right. \\
&\left.\quad \times\left[\frac{1}{6}(4 \lambda+2 \mu+\varepsilon)-J\right][2 J+1]^{-\mathrm{t}}[2 J+2]^{-1}\right\}^{1 / 2} \\
& D(\varepsilon J)=\left\{\left[\frac{1}{6}(2 \lambda+4 \mu-\varepsilon)-J+1\right]\left[\frac{1}{6}(2 \mu-2 \lambda+\varepsilon)+J\right]\right. \\
&\left.\quad \times\left[\frac{1}{6}(4 \lambda+2 \mu+\varepsilon)+J+1\right][2 J]^{-1}[2 J+1]^{-1}\right\}^{1 / 2} .
\end{align*}
$$

## 3. Multicomponent $q$-coherent states for the quantum algebra $s l_{q}$ (3)

For the $I R(\lambda \mu)$ of $s l_{q}(3)$, the Hilbert space $V^{(\lambda \mu)}$ spanned by the Elliott-like bases $|(\lambda \mu) \varepsilon J M\rangle$ is composed of $\lambda+\mu+1 \varepsilon$-subspaces. Every $\varepsilon$-subspace can be divided into many $J$-subspaces. We now introduce $q$-coherent states $|z\rangle_{\varepsilon y}$ by applying the $q$-exponential operator $E_{q}\left(z J_{+}\right)$on the lowest-weight state $|(\lambda \mu) \varepsilon J-J\rangle$ of every $J$ subspace of the $I R(\lambda \mu)$ for $s l_{q}(3)$ :

$$
\begin{align*}
|z\rangle_{\varepsilon J} & =E_{q}\left(z J_{+}\right)|(\lambda \mu) \varepsilon J-J\rangle \\
& =\sum_{n=0}^{2 J}\left(\frac{[2 J]!}{[n]![2 J-n]!}\right)^{1 / 2} z^{n}|(\lambda \mu) \varepsilon J-J+n\rangle \tag{9}
\end{align*}
$$

where the $q$-exponential function $E_{q}(x)$ is defined as

$$
\begin{equation*}
E_{q}(x)=\sum_{n=0}^{\infty} \frac{x^{n}}{[n]!} . \tag{10}
\end{equation*}
$$

We see from (9) that

$$
\begin{equation*}
\left\langle(\lambda \mu) \varepsilon^{\prime} J^{\prime}-J^{\prime}+n \mid z\right\rangle_{\varepsilon} J=\delta_{\varepsilon^{\prime} \varepsilon} \delta_{J^{\prime} J}\left(\frac{[2 J]!}{[n]![2 J-n]!}\right)^{t / 2} z^{n} \tag{11}
\end{equation*}
$$

Similarly to [13], we introduce the multicomponent $q$-coherent states of $s l_{g}(3):\left\{|z\rangle_{\varepsilon}, \varepsilon J=\varepsilon_{\min } J_{0}^{\prime}, \ldots, \varepsilon_{\max } J_{0}\right\}$, where $\varepsilon_{\min }=-\lambda-2 \mu, J_{0}^{\prime}=\lambda / 2, \varepsilon_{\max }=2 \lambda+\mu$ and $J_{0}=\mu / 2$ [12]. The scalar product of them is of the form

$$
\begin{equation*}
\varepsilon^{\prime} J\left\langle z^{\prime} \mid z\right\rangle_{\varepsilon J}=\delta_{\varepsilon^{\prime} \varepsilon} \delta_{J^{\prime} J} B_{2 J}\left(z z^{\prime *}\right) \tag{12}
\end{equation*}
$$

where $B_{2,( }\left(z z^{\prime *}\right)$ is the $q$-binomial

$$
\begin{equation*}
B_{2 J}\left(z z^{*}\right)=\left\{\left(1+z z^{*}\right)^{2 J}\right\}_{q}=\sum_{n=0}^{2 J} \frac{[2 J]!}{[n]!\{2 J-n]!}\left(z z^{*}\right)^{n} \tag{13}
\end{equation*}
$$

One can see from (12) that the $q$-coherent states $|z\rangle_{\varepsilon J}$ in different $\varepsilon$-subspaces or $J$-subspaces are always orthogonal, although those in the same $J$-subspace of $I R(\lambda \mu)$ are not.

Also analogously to [13], the completeness condition of the multicomponent $q$-coherent states of $s l_{q}(3)$ is defined by

$$
\begin{align*}
\sum_{\varepsilon J} \frac{[2 J+1]}{2 \pi} \int & \frac{\mathrm{~d}_{q}^{2} z}{B_{2 J+2}\left(|z|^{2}\right)}|z\rangle_{\varepsilon J \varepsilon J}\langle z| \\
& =\sum_{\varepsilon, J_{n}}|(\lambda \mu) \varepsilon J-J+n\rangle\langle(\lambda \mu) \varepsilon J-J+n|=I . \tag{14}
\end{align*}
$$

In order to derive (14), we have used the $q$-integration formula which had been proved in [14]:

$$
\begin{equation*}
\int_{0}^{\infty} \frac{x^{n}}{B_{2 J+2}(x)} \mathrm{d}_{q} x=\frac{[2 J-n]![n]!}{[2 J+1]!} \quad 0 \leqslant n \leqslant 2 J \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
& \mathrm{d}_{q}^{2} z=\mathrm{d}_{q}\left(|z|^{2}\right) \mathrm{d} \theta \\
& z=r \mathrm{e}^{\mathrm{i} \theta} \quad 0 \leqslant r<\infty \quad 0 \leqslant \theta \leqslant 2 \pi \tag{16}
\end{align*}
$$

where the integral over $\theta$ is the usual integration, but the integration over $|z|^{2}=r^{2}$ is a $q$-integration.

By virtue of the completeness condition (6), one can obtain the expansion of an arbitrary state in terms of the Elliott-like bases of $s l_{q}(3)$ :

$$
\begin{equation*}
|f\rangle=\sum_{\varepsilon J n} C_{n}|(\lambda \mu) \varepsilon J-J+n\rangle \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
C_{n}=\langle(\lambda \mu) \varepsilon J-J+n \mid f\rangle \tag{18}
\end{equation*}
$$

On the other hand, by using the completeness condition (14), the expansion of the state $|f\rangle$ in terms of the multicomponent $q$-coherent states of $s l_{q}(3)$ is

$$
\begin{equation*}
|f\rangle=\sum_{\varepsilon J} \frac{[2 J+1]}{2 \pi} \int \frac{\mathrm{~d}_{q}^{2} z}{B_{2 J+2}\left(|z|^{2}\right)}|z\rangle_{\varepsilon J} f\left(z^{*}\right) \tag{19}
\end{equation*}
$$

where

$$
\begin{align*}
f\left(z^{*}\right) & ={ }_{\varepsilon J}\langle z \mid f\rangle \\
& =\sum_{z^{\prime} J^{\prime} n} C_{n \varepsilon J}\left\langle z \mid(\lambda \mu) \varepsilon^{\prime} J^{\prime}-J^{\prime}+n\right\rangle \\
& =\sum_{n} C_{n}\left(\frac{[2 J]!}{[n]![2 J-n]!}\right)^{1 / 2}\left(z^{*}\right)^{n} . \tag{20}
\end{align*}
$$

Since $f\left(z^{*}\right)$ may be expanded in a convergent power series, $f\left(z^{*}\right)$ is an entire function of $z^{*}$.

An expansion analogous to (19) also exists for the adjoint state vectors:

$$
\begin{equation*}
\langle g|=\sum_{\varepsilon J} \frac{[2 J+1]}{2 \pi} \int \frac{\mathrm{~d}_{g}^{2} z}{B_{2 J+2}\left(|z|^{2}\right)}\left\{g\left(z^{*}\right)\right\}_{c J}^{*}\langle z| \tag{21}
\end{equation*}
$$

and

$$
\begin{align*}
\left\{g\left(z^{*}\right)\right\}^{*} & =\langle g \mid z\rangle_{c J}  \tag{22}\\
& =\sum_{n} C_{n}^{*}\left(\frac{[2 J]!}{[n]![2 J-n]!}\right)^{1 / 2} z^{n} .
\end{align*}
$$

The scalar product of the two states $\langle g|$ and $|f\rangle$ may then be expressed as

$$
\begin{equation*}
\langle g \mid f\rangle=\sum_{\varepsilon J}\left\{\frac{[2 J+1]}{2 \pi}\right\}^{2} \int \frac{B_{2 J}\left(z z^{\prime}\right) \mathrm{d}_{q}^{2} z^{\prime} \mathrm{d}_{q}^{2} z}{B_{2 J+2}\left(\left|z^{\prime}\right|^{2}\right) B_{2 J+2}\left(|z|^{2}\right)}\left\{g\left(z^{\prime *}\right)\right\}^{*} f\left(z^{*}\right) . \tag{23}
\end{equation*}
$$

On the other hand, using the completeness condition (14) we have

$$
\begin{equation*}
\langle g \mid f\rangle=\sum_{\varepsilon J} \frac{[2 J+1]}{2 \pi} \int \frac{\mathrm{~d}_{q}^{2} z}{B_{2 J+2}\left(|z|^{2}\right)}\left\{g\left(z^{*}\right)\right\}^{*} f\left(z^{*}\right) . \tag{24}
\end{equation*}
$$

We may then derive the general identity

$$
\begin{equation*}
\frac{[2 J+1]}{2 \pi} \int \frac{B_{2 J}\left(z^{*} z^{\prime}\right)}{B_{2 J+2}\left(\left|z^{\prime}\right|^{2}\right)} g\left(z^{*}\right) \mathrm{d}_{q}^{2} z^{\prime}=g\left(z^{*}\right) \tag{25}
\end{equation*}
$$

## 4. Expansion of operators in terms of the multicomponent $q$-coherent states of $s l_{q}$ (3)

A general quantum mechanical operator $T$ may be expressed in terms of its matrix elements connecting the Elliott-like bases of $s l_{q}(3)$ as

$$
\begin{equation*}
T=\sum_{\substack{\varepsilon J^{\prime} n \\ \varepsilon J m}}\left|(\lambda \mu) \varepsilon^{\prime} J^{\prime}-J^{\prime}+n\right\rangle T_{\varepsilon^{\prime} J^{\prime}, \varepsilon, J_{m}}\langle(\lambda \mu) \varepsilon J-J+m| \tag{26}
\end{equation*}
$$

where

$$
\begin{equation*}
T_{\varepsilon^{\prime} J^{\prime} n, \varepsilon J m}=\left\langle(\lambda \mu) \varepsilon^{\prime} J^{\prime}-J^{\prime}+n\right| T|(\lambda \mu) \varepsilon J-J+m\rangle \tag{27}
\end{equation*}
$$

If we use this expression to calculate the matrix element which connects the two components $\varepsilon^{\prime} J\left\langle z^{\prime}\right|$ and $|z\rangle_{\varepsilon J}$ of the multicomponent $q$-coherent states of $s l_{q}$ (3) we find

$$
\begin{align*}
\varepsilon^{\prime} J^{\prime}\left\langle z^{\prime}\right| T|z\rangle_{\varepsilon J} & =\sum_{n \neq \pi} T_{\varepsilon^{\prime} J^{\prime} n, \varepsilon J m}\left(\frac{\left[2 J^{\prime}\right]![2 J]!}{[n]![m]!\left[2 J^{\prime}-n\right]![2 J-m]!}\right)^{1 / 2}\left(z^{\prime *}\right)^{n} z^{\prime n} \\
& =\mathscr{G}_{\varepsilon^{\prime} J^{\prime} \varepsilon J}\left(z^{\prime *}, z\right) \tag{28}
\end{align*}
$$

The magnitudes of the matrix elements $T_{\varepsilon^{\prime} J^{\prime}, \varepsilon \delta_{m}}$ are dominated by an expression of the form $M[n]^{i}[m]^{k}[2 J-n]^{\prime}[2 J-m]^{p}$ for some fixed positive values of $M, i, k, l$ and $p$. It then follows that the double series (28) converges throughout the finite $z^{\prime *}$ and $z$ planes, and the function $\mathscr{T}_{\varepsilon^{\prime} J^{\prime} \varepsilon J}\left(z^{*}, z\right)$ is an entire function of both variables.

To secure the expansion of the operator $T$ in terms of the multicomponent $q$-coherent states of $s l_{q}(3)$, we may use the representation (14) of the unit operator to write

$$
\begin{align*}
T & =\sum_{\substack{\varepsilon^{\prime} J^{\prime} \\
\varepsilon J}} \frac{\left[2 J^{\prime}+1\right]}{2 \pi} \frac{[2 J+1]}{2 \pi} \int \frac{\left|z^{\prime}\right\rangle_{\varepsilon^{\prime} J^{\prime} \varepsilon^{\prime} J}\left\langle z^{\prime}\right| T|z\rangle_{\varepsilon J \epsilon J}\langle z|}{B_{2 J^{\prime}+2}\left(\left|z^{\prime}\right|^{2}\right) B_{2 J+2}\left(|z|^{2}\right)} \mathrm{d}_{q}^{2} z^{\prime} \mathrm{d}_{q}^{2} z \\
& =\sum_{\substack{\varepsilon^{\prime} J^{\prime} \\
\varepsilon J}} \frac{\left[2 J^{\prime}+1\right]}{2 \pi} \frac{[2 J+1]}{2 \pi} \int \frac{\left|z^{\prime}\right\rangle_{\varepsilon^{\prime} J^{\prime}} \mathscr{\mathscr { G }}_{\varepsilon^{\prime} J^{\prime} \varepsilon J}\left(z^{\prime *}, z\right)_{\varepsilon J}\left\langle\tilde { } \left\langle\left.\right|^{2}\right.\right.}{B_{2 J^{\prime}+2}\left(\left|z^{\prime}\right|^{2}\right) B_{2 J+2}\left(|z|^{2}\right)} \mathrm{d}_{q}^{2} z^{\prime} \mathrm{d}_{q}^{2} z \tag{29}
\end{align*}
$$

The expansion of operators, as well as of an arbitrary state, in terms of the multicomponent $q$-coherent states of $s l_{q}(3)$ is a unique one.

For the operator $T^{+}$, the Hermitian adjoint of $T$, we have

$$
\begin{equation*}
\left(T^{+}\right)_{\varepsilon / v n, \varepsilon^{\prime} J^{\prime} n}=\left(T_{\varepsilon^{\prime} J^{\prime} n, c J m n}\right)^{*} \tag{30}
\end{equation*}
$$

If the operator $T$ is Hermitian, the function must satisfy the identity

$$
\begin{equation*}
\mathscr{T}_{\varepsilon^{\prime} Y^{\prime}, s J}\left(z^{*}, z\right)=\left(\mathscr{F}_{c J, c^{\prime} J}\left(z^{*}, z^{\prime}\right)\right)^{*} \tag{31}
\end{equation*}
$$

The law of operator multiplication is easily expressed in terms of the function $\mathscr{T}$, If $T=T_{1} T_{2}$ and $\mathscr{T}_{1}$ and $\mathscr{T}_{2}$ are the functions appropriate to the latter two operators, we note that

$$
\begin{align*}
\mathscr{T}_{\varepsilon^{\prime} J^{\prime}, \varepsilon J}\left(z^{\prime *}, z\right) & ={ }_{\varepsilon^{\prime} J^{\prime}}\left\langle z^{\prime}\right| T|z\rangle_{\varepsilon J} \\
& ={ }_{\varepsilon^{\prime} J^{\prime}\left\langle z^{\prime}\right| T_{1} T_{2}|z\rangle_{\varepsilon J}} \\
& =\sum_{\varepsilon^{\prime} J^{\prime \prime}} \frac{\left[2 J^{\prime \prime}+1\right]}{2 \pi} \int \frac{\mathrm{~d}_{q}^{2} z^{\prime \prime}}{B_{2 J^{\prime \prime}+2}\left(\left|z^{\prime \prime}\right|^{2}\right)} \varepsilon^{\prime} J^{\prime}\left\langle z^{\prime}\right| T_{1}\left|z^{\prime \prime}\right\rangle_{\varepsilon^{\prime \prime} J^{\prime \prime} \varepsilon^{\prime \prime} J^{\prime \prime}}\left(z^{\prime \prime}\left|T_{2}\right| z\right\rangle_{\varepsilon J} \\
& =\sum_{\varepsilon^{\prime \prime} J^{\prime \prime}} \frac{\left[2 J^{\prime \prime}+1\right]}{2 \pi} \int \frac{\left.\left(\mathscr{T}_{1}\right)_{\varepsilon^{\prime} J^{\prime}, \varepsilon^{\prime} J^{\prime \prime}\left(z^{\prime} *\right.}, z^{\prime \prime}\right)\left(\mathscr{T}_{2}\right)_{\varepsilon^{\prime \prime} J^{\prime \prime}, \varepsilon J J}\left(z^{\prime \prime} *, z\right)}{B_{2 J^{\prime \prime}+2}\left(\left|z^{\prime \prime *}\right|^{2}\right)} \mathrm{d}_{q}^{2} z^{\prime \prime} \tag{32}
\end{align*}
$$

The density operator $\rho$ may be represented by means of a function of two complex variables $R_{\varepsilon^{\prime} J, \varepsilon J}\left(z^{\prime}, z\right)$ :

$$
\begin{equation*}
\rho=\sum_{\substack{\varepsilon^{\prime} J^{\prime} \\ \varepsilon J}} \frac{\left[2 J^{\prime}+1\right]}{2 \pi} \frac{[2 J+1]}{2 \pi} \int \frac{\left|z^{\prime}\right\rangle_{\varepsilon^{\prime} J^{\prime}} R_{\varepsilon^{\prime} J^{\prime} \cdot \varepsilon,}\left(z^{\prime *}, z\right)_{\varepsilon J}\langle z|}{B_{2 J^{\prime}+2}\left(\left|z^{\prime}\right|^{2}\right) B_{2 J+2}\left(|z|^{2}\right)} \mathrm{d}_{q}^{2} z^{\prime} \mathrm{d}_{q}^{2} z \tag{33}
\end{equation*}
$$

where

$$
R_{\varepsilon^{\prime} \prime^{\prime}, \varepsilon J}\left(z^{\prime *}, z\right)
$$

$$
\begin{align*}
= & \sum_{n m}\left\langle(\lambda \mu) \varepsilon^{\prime} J^{\prime}-J^{\prime}+n\right| \rho|(\lambda \mu) \varepsilon J-J+m\rangle \\
& \times\left(\frac{\left[2 J^{\prime}\right]![2 J]!}{[n]![m]!\left[2 J^{\prime}-n\right]![2 J-m]!}\right)^{1 / 2}\left(z^{\prime}\right)^{n} z^{n} \tag{34}
\end{align*}
$$

The statistical average of an operator $T$ is given by the trace of the product $\rho T$,

$$
\begin{align*}
\operatorname{tr}(\rho T) & =\sum_{\varepsilon J} \frac{[2 J+1]}{2 \pi} \int \frac{\mathrm{~d}_{q}^{2} z}{B_{2 J+2}\left(|z|^{2}\right)}{ }_{\varepsilon J}\langle z| \rho T|z\rangle_{\varepsilon J} \\
& =\sum_{\substack{\varepsilon^{\prime} J^{\prime}}} \frac{\left[2 J^{\prime}+1\right]}{2 \pi} \frac{[2 J+1]}{2 \pi} \int \frac{R_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}\left(z^{*}, z^{\prime}\right) \mathscr{T}_{\varepsilon^{\prime} J \cdot \varepsilon J}\left(z^{\prime *}, z\right)}{B_{2 J+2}\left(|z|^{2}\right) B_{2 J^{\prime}+2}\left(\left|z^{\prime}\right|^{2}\right)} \mathrm{d}_{q}^{2} z^{\prime} \mathrm{d}_{q}^{2} z \tag{35}
\end{align*}
$$

If $T$ is a unit operator $T=1$, we have

$$
\begin{align*}
\mathscr{T}_{\varepsilon^{\prime} J^{\prime}, \varepsilon J}\left(z^{\prime} *, z\right) & ={ }_{\varepsilon^{\prime} J^{\prime}}\left\langle z^{\prime}\right| T|z\rangle_{\varepsilon J} \\
& =\delta_{\varepsilon \varepsilon^{\prime}} \delta_{J J^{\prime}} B_{2 J}\left(z z^{\prime *}\right) \tag{36}
\end{align*}
$$

The trace of $\rho$ itself, which must be normalized to unity, is
$\operatorname{tr} \rho=1$

$$
\begin{equation*}
=\sum_{\varepsilon J}\left(\frac{[2 J+1]}{2 \pi}\right)^{2} \int \frac{B_{2 J}\left(z z^{\prime *}\right) \mathrm{d}_{q}^{2} z^{\prime} \mathrm{d}_{q}{ }^{2} z}{B_{2 J+2}\left(|z|^{2}\right) B_{2 J+2}\left(\left|z^{\prime}\right|^{2}\right)} R_{\varepsilon J, \varepsilon J}\left(z^{*}, z^{\prime}\right) . \tag{37}
\end{equation*}
$$

Since $R_{\varepsilon J, \varepsilon J}\left(z^{*}, z^{\prime}\right)$ is an entire function of $z^{*}$, we may use (25) to carry out the integration over the $z$-plane. In this way we see that the normalization condition on $R$ is

$$
\begin{equation*}
\sum_{\varepsilon J} \frac{[2 J+1]}{2 \pi} \int \frac{R_{\varepsilon J, \varepsilon J}\left(z^{*}, z\right)}{B_{2 J+2}\left(|z|^{2}\right)} \mathrm{d}_{q}^{2} z=1 \tag{38}
\end{equation*}
$$

## 5. Inhomogeneous differential realization

It has been proved that the quasi-exactly solvable problems of quantum mechanics are related to the inhomogeneous differential realization of Lie (super) algebra [15, 16]. So we will study this realization of the quantum algebra $s l_{q}(3)$ here.

The action of the generators of $s l_{q}(3)$ on its multicomponent $q$-coherent states is

$$
\begin{equation*}
X|z\rangle_{\varepsilon J}=\sum_{\varepsilon^{\prime} J^{\prime}}(R(X))_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}|z\rangle_{\varepsilon^{\prime} J^{\prime}} \tag{39}
\end{equation*}
$$

where $X=Q, J_{0}, J_{ \pm}, T_{ \pm 1 / 2}$ and $V_{ \pm 1 / 2} . R(X)$ is the matrix representation of the generator $X$ in the multicomponent $q$-coherent state space. Its elements are $(R(X))_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}$; here the row index $\varepsilon J$, as well as the column index $\varepsilon^{\prime} J^{\prime}$, is an ordered pair.

Then we can obtain that

$$
\begin{aligned}
& (R(Q))_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}=\delta_{\varepsilon \varepsilon^{\prime}} \delta_{J J^{\prime}} \varepsilon \\
& \left(R\left(J_{0}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}=\delta_{\varepsilon \varepsilon^{\prime}} \delta_{J J^{\prime}}\left(-J+z \frac{\mathrm{~d}}{\mathrm{~d} z}\right) \\
& \left(R\left(J_{+}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}=\delta_{\varepsilon \varepsilon^{\prime}} \delta_{J J^{\prime}} \frac{\mathrm{d}}{\mathrm{~d}_{q} z} \\
& \left(R\left(J_{-}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}=\delta_{\varepsilon \varepsilon^{\prime}} \delta_{J J}\left(-z^{2 J+2} \frac{\mathrm{~d}}{\mathrm{~d}_{q} z} z^{-2 J}\right)
\end{aligned}
$$

$$
\begin{align*}
&\left(R\left(T_{1 / 2}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}} \\
&= \delta_{\varepsilon^{\prime} \varepsilon+3} \delta_{J^{\prime} J+1 / 2} A(\varepsilon J)\{[2 J+1]\}^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d}_{q} z} \\
&-\delta_{\varepsilon^{\prime} \varepsilon+3} \delta_{J^{\prime} J-1 / 2} B(\varepsilon J)\{[2 J]\}^{1 / 2} \\
&\left(R\left(T_{-1 / 2}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}}  \tag{40}\\
&=-\delta_{\varepsilon^{\prime} \varepsilon+3} \delta_{J^{\prime} J+1 / 2} A(\varepsilon J)\{[2 J+1]\}^{-1 / 2} z^{2 J+2} \frac{\mathrm{~d}}{\mathrm{~d}_{q} z} z^{-2 J-1} \\
&+\delta_{\varepsilon^{\prime} \varepsilon+3} \delta_{J^{\prime} J-1 / 2} B(\varepsilon J)\{[2 J]\}^{1 / 2} z \\
& \begin{aligned}
&\left(R\left(V_{1 / 2}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}} \\
&= \delta_{\varepsilon^{\prime} \varepsilon-3} \delta_{J^{\prime} J+1 / 2} C(\varepsilon J)\{[2 J+1]\}^{-1 / 2} \frac{\mathrm{~d}}{\mathrm{~d}_{q} z} \\
&+\delta_{\varepsilon^{\prime} \sigma^{\prime}-3} \delta_{J^{\prime} J-1 / 2} D(\varepsilon J)\{[2 J]\}^{1 / 2} \\
&\left(R\left(V_{-1 / 2}\right)\right)_{\varepsilon J, \varepsilon^{\prime} J^{\prime}} \\
&=-\delta_{\varepsilon^{\prime} \varepsilon-3} \delta_{J^{\prime} J+1 / 2} C(\varepsilon J)\{[2 J+1]\}^{-1 / 2} z^{2 J+2} \frac{\mathrm{~d}}{\mathrm{~d}_{q} z} z^{-2 J-1} \\
&-\delta_{\varepsilon^{\prime} \varepsilon-3} \delta_{J^{\prime} J-1 / 2} D(\varepsilon J)\{[2 J]\}^{1 / 2} z
\end{aligned}
\end{align*}
$$

where $\mathrm{d} / \mathrm{d} z$ is the usual differential operator, and $\mathrm{d} / \mathrm{d}_{q} z$ is the $q$-differential operator with respect to the complex variable $z$. The $q$-derivative is defined to be [17, 18]

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d}_{q} z} f(z)=\frac{f\left(q^{-1} z\right)-f(q z)}{q^{-1} z-q z} \tag{41}
\end{equation*}
$$

We have the following $q$-derivative formulae:
$\frac{\mathrm{d}}{\mathrm{d}_{q} z}\{f(z) \pm g(z)\}=\frac{\mathrm{d}}{\mathrm{d}_{q} z} f(z) \pm \frac{\mathrm{d}}{\mathrm{d}_{q} z} g(z)$
$\frac{\mathrm{d}}{\mathrm{d}_{q} z}\{f(z) g(z)\}=\left\{\frac{\mathrm{d}}{\mathrm{d}_{q} z} f(z)\right\} g\left(q^{-1} z\right)+f(q z) \frac{\mathrm{d}}{\mathrm{d}_{q} z} g(z)$
$\frac{\mathrm{d}}{\mathrm{d}_{q} z}\left\{\frac{f(z)}{g(z)}\right\}=\left\{g\left(q^{-3} z\right) g(q z)\right\}^{-1}$

$$
\times\left\{g\left(q^{-1} z\right) \frac{\mathrm{d}}{\mathrm{~d}_{q} z} f(z)-f(q z) \frac{\mathrm{d}}{\mathrm{~d}_{q} z} g(z)\right\} .
$$

It may be proved that the matrix operators $R(X)$, whose elements are shown by (41), give rise to an inhomogeneous differential realization of $s l_{q}(3)$.

## 6. Concluding remarks

We have constructed the multicomponent $q$-coherent states and obtained the inhomogeneous differential realization for the quantum algebra $s l_{q}$ (3). It is obvious that this
method may be generalized to arbitrary Lie algebra, Lie superalgebra and quantum algebra which contains the subalgebra $s u(2)$. A straightforward example is the Lie algebra $s u(3)$, which is the classical counterpart for $s l_{q}$ (3). The vector coherent states of $s u(3)$ have been given by Hecht [19]. It is also possible to construct the multicomponent coherent states of $s u(3)$ by means of the method represented in this paper.

## Acknowledgment

This work was supported in part by the Fund of the Science and Technology Committee of Hunan province.

## References

[I] Klauder J R and Skagerstam B S (ed) 1985 Coherent States (Singapore: World Scientific)
[2] Schrödinger E 1926 Naturwissenschaften 14664
[3] Glauber R J 1963 Phys. Rev. 130 2529; 1963 Phys. Rev. 1312766
[4] Perelomov A M 1972 Commun. Math. Phys. 26 222; 1975 Conmun. Math. Phys. 44197
[5] Gilmore R 1972 Ann. Phys, 74391
Gilmore R, Bowden C M and Narducci L M 1975 Phys. Rev. A 121019
[6] Zhang Wei-Min, Feng Da Hsuan and Gilmore R 1990 Rev. Mod. Phys. 62867
[7] Biedenharn L C 1989 J. Phys. A: Math. Gen. 22 L873
[8] Macfarlane A J 1989 J. Phys. A: Math. Gen. 224581
[9] Quesne C 1991 Phys. Lett. 153A 303
[10] Jimbo M 1985 Lett. Math. Phys. 10 63; 1986 Lett. Math. Phys. 11247
[11] Yu Zurong 1991 J. Phys. A: Math. Gen. 24 L399
[12] Elliott J P 1958 Proc. R. Soc. London A 245 128; Proc. R. Soc. London A 245562
[13] Kuang Le-Men and Zeng Gao-Jian 1993 J. Phys. A: Math. Gen. 26913
[14] Kuang Le-Man 1992 J. Phys. A: Math. Gen. 254827
[15] Turbiner A V 1988 Commum. Math. Phys. 118467
[16] Shifman M A and Turbiner A V 1989 Commun. Math. Phys. 126347
[17] Gray R W and Nelson C A 1990 J. Phys. A: Math. Gen. 23 L945
[18] Bracken A J, McAnally D S, Zhang R B and Gould M D 1991 J. Phys. A: Math. Gen. 241379
[19] Hecht K T 1987 Nucl. Phys. A 475276

