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Absbact. The multicomponent q-coherent states associated~with the quantum algebra s/,(3) 
are presented. The expansions %e discussed for arbitrary operators in terms of the multi- 
component q-coherent states of ~ ( ~ ( 3 ) .  An inhomogeneous differential realization of s1,(3) 
in this multicomponent q-coherent State space is obtained. 

1. Introduction 

It is well known that the theory of coherent states has as long a history as quantum 
mechanics itself, and continues to generate interest, not just theoretically but also practi- 
cally [I]. The concept of coherent states was first introduced by Schrodinger in I926 
[2]. The coherent states were first used by Glauber in the field of quantum optics [3], 
and extended to arbitrary Lie groups by Perelomov and Gilmore [4, 51. An excellent 
review is given in [6 ] .  

Recently, the coherent states of quantum algebra have also attracted much attention. 
The q-deformed boson realization of the quantum algebra 4 2 )  has been introduced 
by Biedenham 171 and Macfarlane [8 ] .  The q-coherent states of the q-harmonic oscilla- 
tor have been given by Biedenharn [7]. For the quantum algebra m,(2), the q-analogue 
of the usual spin coherent state has been constructed by Quesne [9]. 

In this paper, by analysing the properties of the finite-dimensional irreducible r e p  
resentations of sf,(3), we present the multicomponent q-coherent states of 4 3 ) ,  and 
discuss the expansions of arbitrary operators in terms of these q-coherent state vectors. 
We also study the inhomogeneous differential realization of s1,(3) in this multi- 
component q-coherent state space. 

2. Quantum algebra 4 ( 3 )  

For the quantum algebra s1,(3), the general relations have been given by Jimbo [IO]. 
The generators of 4 ( 3 )  have been rewritten as Q, Ja,  J,, T,,,2 and by Yu [ I l l .  
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They obey the commutator relations 

[Q, JoI=tQ, J+1=0 

[Jo, TI=sTs [Jo, v,l=sK [Q, T;1=3Ts (1) 

[Q, K1=-3v$ S = i T  

[ J o  , J*l= +Jt [J+ , J-I = [%I 

I 

and 

J+ = (.I-)+ v*1/2 = T(TW/Z)+ JiTT1/2 + TW2Ji = 121 J* T, I d *  (2) 

1x1 = (4y-4-3/(4-4-1) (3) 

[-x] = -[XI. (4) 

where. 

so 

This tells us that the operators Jo and Jt form the quantum subalgebra suq(2) of the 
quantum algebra slq(3). The operator Q is an irreducible tensor of rank zero, {Jo, J*} 
is a set of irreducible tensor operators of rank I, and {T+1/2} and { Vi1D} are two sets 
of rank f for suq(2). 

If q is not a root of unity, the finite-dimensional irrep of slq(3) can be given by the 
non-negative integers A and p. The bases of Hilbert space Vr’”) carrying the f R ( 1 p )  
of s1,(3) are the Elliott-like bases I(Ap)&JM), where &=-L-2p, -L-2p + 3 , ,  . . , 
2A+p; J=i12A-2p-&I, ;12A-2p-&1+1,. . ., min{k(2L+4p-~), i ( 2 p + 4 k + & ) }  
and M=-J,  -J+ 1,.  . . , J [12]. They are orthonormal and complete 

( (ap) &JM~ (a fP‘)  E ‘J’M’) = 6m &,,”. ( 5 )  

c i ( w d m < ( a w M i  = I  (6) 

tiJJsMW 

d M  



3. Multicomponent q-coherent states for the quantum algebra 4 ( 3 )  

For the IR(Ap)  of s1,(3), the Hilbert space V"") spanned by the Elliott-like bases 
I(Lp)EJM) is composed of A + p  + 1 &-subspaces. Every &-subspace can be divided into 
many J-subspaces. We now introduce q-coherent  states^ 1 ~ ) ~ ~  by applying the 
q-exponential operator E,(zJ+) on the lowest-weight state I(Ap)&J-J) of every J- 
subspace of the I R ( L p )  for s1,(3): 

I ZL,= (zJ+) i (wd- J >  

where the q-exponential function E,(x) is defined as 

We see from (9) that 

Similarly to [13], we introduce the multicomponent q-coherent states of 
s1,(3): { I z > . J ,  &J=&,,.Jb,. . .. E , , , ~ J ~ } ,  where smin=-A-2p, J6=A/2, &,,.=2A+p 
and Jo=p/2 [12]. The scalar product of them is of the form 

One can see from (12) that the q-coherent states lz).., in different &-subspaces or 
J- subspaces are always orthogonal, although those in the same J-subspace of IR(J.p) 
are not. 
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Also analogously to [ I  31, the completeness condition of the multicomponent 
q-coherent states of s1,(3) is defined by 

= I ( a ~ ) & J - J + n ) ( ( a ~ ) & J - J + n l  =I.  (14) 
SJ" 

In order to derive (14), we have used the q-integration formula which had been proved 
in [14]: 

and 

d;r=d,([z[*) dB 

z = r e  O<r<CO 0 $,e ~2~ ie 

where the integral over 6 is the usual integration, but the integration over 1zlZ=r2 is a 
q-integration. 

By virtue of the completeness condition (6), one can obtain the expansion of an 
arbitrary state in terms of the Elliott-like bases of slq(3): 

If)= C G l ( W E J - J + n )  (17) 
bJn 

where 

c.=<(ap)&J--J+nlf). (18) 

On the other hand, by using the completeness condition (14), the expansion of the state 
I f )  in terms of the multicomponent q-coherent states of 4 ( 3 )  is 

Sincef(a*) may be expanded in a convergent power series, f ( i*)  is an entire function 
of Z*. 

An expansion analogous to (19) also exists for the adjoint state vectors: 
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and 

The scalar product of the two states (gl and I f )  may then be- expressed as 

On the other hand, using the completeness condition (14) we have 

We may then derive the general identity 

3077 

4. Expansion of operators in terms of the multicomponent q-coherent states of sfq(3) 

A general quantum mechanical operator T may be expressed in terms of its matrix 
elements connecting the Elliott-like bases of slq(3) as 

T= c 1 (aP)s,.r -J’+n)T,.J,.,((aP)&J-J+mi (26) 
r7’n 
sJ>” 

where 

T ~ . ~ ~ . ~ ~ ~  = ((np)&’.r -7 +nl TI (ap)&.r- J + m ) .  (27) 

If we use this expression to calculate the matrix element which connects the two compo- 
nents ..& and la)s, of the multicomponent q-coherent states of sIq(3) we find 

= 9-dJ,sJ(z’*, 2). (28) 

The magnitudes of the matrix elements T,.J,,,,~,. are dominated by an expression of the 
form M[n]’[m]*[2J-n]‘[2J-m]’ for some fixed positive values of M ,  i, k, I andp. It 
then follows that~the double series (28) converges throughout the finite z‘* and z planes, 
and the function TdrEJ(z’* ,  z) is an entire function of both variables. 
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To secure the expansion of the operator Tin terms of the multicomponent q-coherent 
states of s1,(3), we may use the representation (14) of the unit operator to write 

The expansion of operators, as well as of an arbitrary state, in terms of the multi- 
component q-coherent states of slq(3) is a unique one. 

For the operator T', the Hermitian adjoint of T, we have 

(30) * 
( T + ) c J . ~ . s ~ J ~ n  ( T e r n , d  . 

If the operator T is Hermitian, the function must satisfy the identity 

%~.&'*, z ) = ( ~ c J . c J  0- ~ : . (Z* ,z ' ) )* .  (31) 
The law of operator multiplication is easily expressed in terms of the function X If 

T= TIT2 and 3 and % are the functions appropriate to the latter two operators, we 
note that 

&'J'.cJ(Z' *, 2) c'J'(z' I Tlz)6J 

= s'J'(z'1 TI T2l z > e J  

The density operator p may be represented by means of a function of two complex 
variables R,.J',.J(z'*, 2 ) :  
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The statistical average of an operator Tis given by the trace of the product pT, 

If T i s  a unit operator T= I ,  we have 

%l’,rJ(Z’*, z)=E,l.<z‘lTlz>cJ 

= ~ , ~ ~ J J . & J ( z z ’ * ) .  

The trace of p itself, which must be normalized to unity, is 

Since R,,~.,,(z*, 2‘) is an entire function of i*, we may use (25) to carry~out the integra- 
tion over the z-plane. In this way we see that the normalization condition on R is 

S. Inhomogeneous differential realization 

It has been proved that the quasi-exactly solvable problems of quantum mechanics are 
related to the inhomogeneous differential realization of Lie (super) algebra [15, 161. So 
we will study this realization of the quantum algebra slq(3) here. 

The action of the generators of 4 ( 3 )  on its multicomponent q-coherent states is 

Xlz)s~= 1 (R(X) )s! ,e~ lz><~,  (39) 
dl’ 

whereX= Q, Jo, J*, T+I/2and V+,,. R ( X )  is the matrix representation of thegenerator 
X in the multicomponent q-coherent state space. Its elements are ( R ( X ) ) h J , d ~ ;  here 
the row index EJ, as well as the column index E‘J‘, is an ordered pair. 

Then we can obtain that 

(R(Q)) .J .~J ,=~, , ,~ ,J ,  E 



- ~ I , - J ~ J J - I / ~  D ( E J ) { [ 2 J ] }  'I2 Z 

where d/dz is the usual differential operator, and d/d,z is the q-differential operator 
with respect to the complex variable z. The qderivative is defined to be [17, 181 

We have the following q-derivative formulae: 

It may be proved that the matrix operators R ( X ) ,  whose elements are shown by (41), 
give rise to an inhomogeneous differential realization of s1,(3). 

6. Concluding remarks 

We have constructed the multicomponent q-coherent states and obldined the inhomo- 
geneous differential realization for the quantum algebra s1,(3). It is obvious that this 
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method may be generalized to arbitrary Lie algebra, Lie superalgebra and quantum 
algebra which contains the subalgebra m(2). A straightforward example is the Lie 
algebra su(3), which is the classical counterpart for s1,(3). The vector coherent states of 
su(3) have been given by Hecht [19]. It is also possible to construct the multicomponent 
coherent states of 4 3 )  by means o f  the method represented in this paper. 
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